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Abstract

A classi®cation of domain pairs in ferroic crystals is
given in which all domain pairs in each class can be
distinguished by the same set of physical property
tensors. Tabulations are presented giving in which
ferroic phase transitions such domain pairs arise.
Whether a physical property tensor can or cannot
distinguish between the domains of domain pairs of each
class is given for a wide variety of physical properties.

1. Introduction

Consider a ferroic phase transition, a phase transition of
a crystalline structure from a phase of higher symmetry
G to a phase of lower symmetry F where there is a
change in the point-group symmetry. In the lower-
symmetry phase, domains, volumes of homogeneous
crystalline structure oriented in space in a speci®c
manner, arise. If a single domain appears in the lower-
symmetry phase, it can appear as any one of n � jGj=jFj
single domain states S1, S2, . . . , Sn, where |G| and |F|
denote the number of elements in G and F, respectively.
Single domain states have the same crystalline structure
and differ only in their orientation in space. The orien-
tations of all single domain states are related by the
rotational parts of elements of G.

In a polydomain low-symmetry phase, domains
appear with the same crystalline structure and various
orientations. Domain states will refer to the bulk struc-
tures, with their speci®c orientations in space, of
domains in a polydomain sample. Several disconnected
domains can have the same domain state. Domain states
then represent the structures that appear in a poly-
domain sample, irrespective of which domain they are
in. In nonferroelastic polydomain phases, the orienta-
tion of each domain state coincides with the orientation
of a single domain state. The number of domain states is
therefore the same as the number of single domain
states.

In ferroelastic polydomain phases, because of dis-
orientations, i.e. rotations of domains that arise as a
result of the requirement that neighboring domains in

the polydomain sample must meet along a coherent
boundary, domain states in general differ in their
orientation from single domain states, and the number
of domain states is in general greater than the number of
single domain states. In distinction with domains in non-
ferroelastic polydomain phases, the orientations are
then, in general, not related by the rotational parts of
the elements of G. We shall consider here ferroelastic
polydomain phases in the parent-clamping approxi-
mation (Zikmund, 1984; Janovec et al., 1989) which
disregards the disorientations. If we disregard the
disorientations, the number and orientation of domain
states in a ferroelastic polydomain sample also coincide
with the number and orientations of single domain
states, as in nonferroelastic polydomain samples, and are
again related by the rotational parts of the elements of
G.

Let TMPP denote a macroscopic tensorial physical
property. As the mathematical tensorial representation,
i.e. vector, pseudovector, rank two tensor etc., of more
than a single macroscopic tensorial physical property
can be the same, we denote by T the type of mathe-
matical tensorial representation corresponding to a
macroscopic tensorial physical property. We shall refer
to T as a tensor type.

We are interested here in what is referred to as tensor
distinction, i.e. the distinction of the domains in a poly-
domain phase of a ferroic phase transition by macro-
scopic tensorial physical properties of tensor types T. As
the set of domain states represents the structure of all
domains in a polydomain phase, we consider the tensor
distinction of the domain states.

We denote by Ti, i � 1; 2; . . . ; n, the form of the
tensors of a tensor type T in the set of domain states of a
polydomain sample. The tensors Ti , i � 1; 2; . . . ; n, are
all given in a single coordinate system, e.g. the coordi-
nate system of the parent phase structure or of one of
the domain states. A tensor type T is said to be able to
distinguish between two domain states, with corre-
sponding tensors Ti and Tj of the type T, if Ti 6� Tj . In
particular, we consider two types of tensor distinction
problems.

(a) Global tensor distinction: We consider whether or
not a tensor type T can distinguish among all domain
states.
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(b) Domain pair tensor distinction: For each pair of
domain states, we consider whether or not a tensor type
T can distinguish between the domain states of the
domain pair.

Global tensor distinction is reviewed in x2, and
domain pair distinction is presented in xx3 and 4. Both of
these distinction problems consider whether or not a
tensor as a whole can distinguish domain states. We do
not consider whether or not individual components of
the tensor distinguish domain states. This latter problem,
and its relationship to the work presented in this paper,
is discussed in x5.

Because we are considering the tensor distinction of
domain states by macroscopic physical property tensors
that depend only on the point group of the space-group
symmetry of the domain state's structure, we shall now
interpret the symbols G and F to be the point groups of
the higher- and lower-symmetry phases, respectively.
Consequently, we begin with a set of domain states
S1, S2, . . . , Sn (for typographical simplicity, and because
in the parent clamping approximation the number and
orientation of the domain states is the same as for single
domain states, we use the same symbols for domain
states as for single domain states), where n � jGj=jFj
and where the orientation of the domain states are
related by elements of G not in F: We write the group G
in a left coset decomposition with respect to F as

G � F� g2F� g3F� . . .� gnF; �1�
where the elements gi , i � 1; 2; . . . ; n, g1 � 1, are called
the coset representatives of the coset decomposition of G
with respect to F. The choice of coset representatives is
not unique, the coset representative gi can be replaced
by gi f, where f is an element of F. De®ning the domain
state S1 as the domain invariant under F, the orientations
of the remaining domain states are related to S1 by the
coset representatives of equation (1), i.e. Si � giS1,
i � 2; 3; . . . ; n. In addition, each domain state Si ,
i � 1; 2; . . . ; n, is invariant under the group Fi � giFgÿ1

i .

2. Global tensor distinction

Consider a ferroic phase transition of a crystalline
structure from a phase of higher symmetry G to a phase
of lower symmetry F. Let S1, S2, . . . , Sn denote the
domain states of the lower-symmetry phase, T a tensor
type, and tensors Ti , i � 1; 2; . . . ; n, the form of the
tensor type T in the domain states S1, S2, . . . , Sn.
Following the terminology of Aizu (1970), if the set of
tensors Ti , i � 1; 2; . . . ; n, are all distinct, then we shall
say that the tensor T provides a full distinction of the
domain states Si , i � 1; 2; . . . ; n, and the transition is a
full ferroic phase transition with respect to tensor type
T. Each domain state is then characterized by a distinct
form of tensor type T, and macroscopic physical prop-
erties of this tensor type can distinguish all domain

states. If the set of tensors Ti , i � 1; 2; . . . ; n, are not all
distinct but not all identical, then we shall say that the
tensor T provides a partial distinction of the domain
states, and the transition is a partial ferroic phase tran-
sition with respect to tensor type T. A tensor of type T
can then distinguish among some but not all of the
domain states. If the set of tensors Ti, i � 1; 2; . . . ; n, are
all identical, then the tensor type T provides no
distinction, we shall say a null distinction, of the domain
states. The transition is referred to as a null ferroic phase
transition with respect to the tensor type T.

Litvin (1984) has subdivided the `null' case into two:
The case where the set of tensors Ti , i � 1; 2; . . . ; n, are
all identically zero, is referred to as zero distinction, and
only in the case where the set of tensors are all identical
and nonzero is it referred to as null distinction.

Concomitant with the classi®cation of ferroic phase
transitions into full, partial, null and zero classes with
respect to a speci®c tensor type T is the classi®cation of
ferroic phase transitions with respect to the higher- and
lower-symmetry phase groups G and F. Aizu (1979) has
introduced four classi®cations. Two ferroic phase tran-
sitions G to F and G to F0 are said to belong to the same
class of phase transitions if

(c1) F � F0;
(c2) F and F0 are conjugate subgroups of G (there is an

element g of G such that gFgÿ1 � F0);
(c3) there is an element r of the three-dimensional

rotation group R, not necessarily contained in G, such
that rGrÿ1 � G and rFrÿ1 � F0;

(c4) F and F0 belong to the same class of point groups
(there is an element r of R such that rFrÿ1 � F0).
According to which of the four criteria is used, there are,
respectively, 433, 247, 212 or 190 classes of ferroic phase
transitions.

In Litvin (1984), the classi®cation with criterion (c2)
was used. With this classi®cation, it is guaranteed that a
ferroic phase transition belonging to the class of G and F
will have F as the point-group symmetry of one of its
domains. Table 1 gives one example for each of the 247
classes of ferroic phase transitions using criterion (c2)²
in which we list the groups F and G. The ®rst column
gives a numerical index for the class of ferroic phase
transitions and the second and third columns give the
corresponding groups G and F, respectively.

A general method for determining the global tensor
distinction for classes of ferroic phase transitions was
given by Litvin (1984). A tabulation of the global tensor
distinction of all 247 classes of ferroic phase transitions
for all tensor types T of rank n � 4 has been given by
Litvin (1985).

² The complete tables have been deposited with the IUCr. These are
available from the IUCr electronic archives (Reference: CR0536).
Services for accessing these data are described at the back of the
journal. The complete tables may also be downloaded from http://
www.bk.psu.edu/faculty/Litvin.
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3. Domain pair tensor distinction

Consider a ferroic phase transition of a crystalline
structure from a phase of higher symmetry G to a phase
of lower symmetry F. Let S1, S2, . . . , Sn denote the
domain states of the lower-symmetry phase, T a
tensor type, and tensors Ti , i � 1; 2; . . . ; n, the form
of tensor type T in the domain states S1, S2, . . . , Sn.
We now consider all ordered domain pairs {Si, Sj},
i; j � 1; 2; . . . ; n, i 6� j. The tensors Ti and Tj of the two
domain states in the domain pair {Si, Sj} can be deter-
mined as follows: if Ti is the form of tensor type T that is
invariant under the point group Fi, the point group of
the domain state Si , Tj can be determined from Ti ,
Tj � gijTi, where gij is an element of G that transforms
domain state Si into domain state Sj , i.e. Sj � gijSi.
[Tj � gijTi only represents the equation that relates the
components of the tensors. The actual equation depends
on the transformational properties of the tensor type T
and its rank (Nye, 1957).] The element gij is not unique,
as any element of the coset gijFi can be used. Conse-

quently, in a ferroic phase transition from G to F, the
tensor distinction of a domain pair {Si, Sj} is determined
by the point group Fi and the element gij of G.

We will classify all possible domain pairs {Si, Sj} into
classes where all domain pairs in a single class are
distinguished by the same set of tensor types. To this
end, we introduce the following tensor classi®cation of
domain pair:

Two domain pairs, {Si, Sj}, whose tensor distinction is
determined by the point group Fi and element gij, and
{Si0, Sj0}, whose tensor distinction is determined by the
point group Fi0 and element gi0j0, are said to be in the
same class of domain pair if there exists an element r of
the full rotation group R such that:

rFir
ÿ1 � Fi0 �2a�

and

rg1jr
ÿ1 � gi0 j0 fi0 ; �2b�

where fi0 is an element of Fi0. The appearance of the
element fi0 in (2b) is due to the non-uniqueness of the
choice of the coset representative gi0j0. To remove any
non-uniqueness in equations (2a) and (2b), we can
replace (2b) with the condition

rgijFir
ÿ1 � gi0j0Fi0 : �2c�

All elements of the coset gijFi, i.e. all elements of G that
transform the domain state Si into the domain state Sj,
are taken by (2c) into all the elements of G that trans-
form the domain state Si0 into the domain state Sj0. That
equation (2c) follows from (2a) and (2b) is shown in
Appendix A. In Appendix B, we show that this classi-
®cation of domain pairs is appropriate for the tensor
distinction of domain pairs. That is, if two domain pairs
belong to the same class of domain pairs, then, if a tensor
type can (cannot) distinguish between the ®rst pair of
domains, it can (cannot) distinguish between the second
pair of domains.

We shall refer to the classes of domain pairs provided
by the classi®cation scheme given by equations (2) as
equivalence tensor classes of domain pairs, or simply as
tensor classes of domain pairs.

This tensor classi®cation of domain pairs is equivalent
to the following classi®cation (Janovec, 1972) of ordered
domain pairs (see Appendix C): Two domain pairs,
{Si, Sj} and {Si0, Sj0} are said to be in the same class of
domain pairs if there exists an element r of the full
rotation group R such that:

frSi; rSjg � fSi0 ; Sj0 g:
This is a classi®cation of ordered domain pairs. That is,
the unordered pair of domain pairs {Si, Sj} and {Sj, Si} are
not automatically placed in the same tensor class. While,
if a tensor of type T can or cannot distinguish between
domain state Si and Sj , it is trivial to conclude it can or
cannot distinguish between the domain states Sj and Si,

Table 1. The 247 classes of ferroic phase transitions

The ®rst column gives a numerical index. In the second and third
columns, respectively, are the corresponding groups G and F of one
ferroic phase transition G to F belonging to this class For each pair of
groups, in the third through ®fth columns, respectively, is the point
group F, element gij and twinning group Kij of one domain pair from
each double-coset class of domain pairs that can arise in the ferroic
phase transition G to F. Only those classes are listed for which F =
2x2y2z.

No. G F gij Kij

27 mxmymz 2x2y2z 1Å mxmymz

47 4z2x2xy 2x2y2z 2xÅy 4z2x2xy

61 4Å z2xmxy 2x2y2z mxÅy 4Å z2xmxy

76 4z/mzmxmxy 2x2y2z 2xÅy 4z2x2xy

1Å mxmymz

mxÅy 4Å z2xmxy

184 2z3xyz 2x2y2z 3xyz 2z3xyz

3xyz
2 2z3xyz

190 mz3Å xyz 2x2y2z 3xyz 2z3xyz

3xyz
2 2z3xyz

1Å mxmymz

3Å xyz mz3Å xyz

3Å xyz
5 mz3Å xyz

203 4z3xyz2xy 2x2y2z 3xyz 2z3xyz

3xyz
2 2z3xyz

2xÅy 4z2x2xy

2yÅz 4x2y2yz

2xÅz 4y2x2xz

213 4Å z3xyzmxy 2x2y2z 3xyz 2z3xyz

3xyz
2 2z3xyz

mxÅy 4Å z2xmxy

myÅz 4Å x2zmyz

mxÅz 4Å y2zmxz

239 mz3Å xyzmxy 2x2y2z 3xyz 2z3xyz

3xyz
2 2z3xyz

2xÅy 4z2x2xy

2yÅz 4x2y2yz

2xÅz 4y2x2xz

1Å mxmymz
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we do not use a classi®cation of unordered domain pairs.
The reasons for this are discussed in x5.

There is a second classi®cation of domain pairs
(Janovec, 1972). Because of its relationship to the
double-coset decomposition of G with respect to F, we
shall refer to it as the classi®cation of domain pairs into
double-coset classes of domain pairs. Two domain pairs
{Si, Sj} and {Si0, Sj0} belong to the same double-coset class
of domain pair if there exists an element g of G such that
fgSi; gSjg � fSi0 ; Sj0 g. It follows (see Appendix D) that all
domain pairs belonging to the same double-coset class
also belong to the same tensor class of domain pairs.
However, domain pairs that belong to different double-
coset classes may also belong to the same tensor class
of domain pairs. For example, in a phase transition
between G � 2x2y2z and F � 1, where S2 � 2xS1,
S3 � 2yS1 and S4 � 2zS1, the two domain pairs {S1, S2}
and {S1, S3} belong to two different double-coset classes
of domain pairs. In this case, in equations (2), we have
Fi � Fi0 � 1, gij � 2x and gi0 j0 � 2y. With r � 2xy, equa-
tions (2) are satis®ed and these two domain pairs belong
to the same tensor class of domain pair.

To tabulate all tensor classes of domain pairs {Si, Sj},
we shall tabulate the group Fi and element gij of one
domain pairs from each tensor class of domain pairs.
However, to determine all tensor classes of domain pairs
and also to provide information on which tensor classes
of domain pairs arise in which classes of phase transition
from a phase of higher symmetry G to a phase of lower
symmetry F, we proceed as follows:

We ®rst consider each of the 247 classes of phase
transition between a phase of higher symmetry G to a
phase of lower symmetry F. We consider one such phase
transition from each class, the phase transition corre-
sponding to the G and F tabulated in Table 1. For each
pair of groups G and F listed in Table 1, we list the point
group Fi and element gij of one domain pair (Si, Sj) from
each double-coset class of domain pairs that can arise in
such a phase transition. [A complete analysis of the
domain pairs in each double-coset class of domain pairs

can be found in Schlessman & Litvin (1995).] It has been
shown (Wike & Litvin, 1989) that in a phase transition
from G to F one can always choose from each double-
coset class a domain pair with Fi � F. We do so, and in
Table 1 tabulate in the fourth column, for each G and F,
the element gij of one domain pair from each double-
coset class. In the ®fth column, we give the group
Kij � hFi; giji, the so-called twinning group (Janovec et
al., 1995) generated by the group Fi � F and the element
gij. The twinning group will play, as will be seen below, a
central role in the computation of the tensor distinction
of domain pairs.

In Table 1, many double-coset classes of domain pairs
appear more than once, under different classes of phase
transitions. Consequently, we give in Table 2 a tabulation
of the distinct double-coset classes of domain pairs that
appear in Table 1. The groups Kij and F are given in the
second and third columns, respectively, the sequential
listing of Table 2 being given with respect to the groups
F. In the fourth column, we give not only the element gij

but a complete list the elements of the coset gijF, as any
element of the coset gijF can be taken as the twinning
element of the domain pair. In the ®fth column, the
numerical indices, from Table 1, of all phase transitions
G to F that contain the double-coset class of domain
pairs are given. Not all double-coset classes belong to
distinct tensor classes of domain pairs. In the ®rst
column of Table 2, we give the numerical index of the
tensor class to which the double-coset class of domain
pairs belongs.

A listing of the 139 tensor classes of domain pairs is
given in Table 3. The tensor class's numerical index is
given in the ®rst column. An asterisk is given after the
numerical index to denote that the tensor class is
nonferroelastic, i.e. the two domain states of a domain
pair belonging to a nonferroelastic tensor class have the
same (zero) spontaneous deformation. The groups Kij, F
and the elements of the coset gijF, of one domain pair
belonging to each tensor class, are given in the second,
third and fourth columns, respectively.

Table 2. The distinct double-coset classes of domain pairs

The tensor class, the twinning group Kij and F of each double-coset class are given in the ®rst through third columns, respectively. This is followed
by an explicit listing of elements of the coset gijF and a list of the numerical indicies, from Table 1, of all ferroic phase transitions G to F that
contain domain pairs of the double-coset class. Only those classes are listed for which F = 2x2y2z.

Tensor class Kij F
gijF

53 mxmymz 2x2y2z 1Å mx my mz 27,76,190,239
54 4z2x2xy 2x2y2z 2xy 2xÅy 4z 4z

3 47,76,203,239
54 4x2y2yz 2x2y2z 2yÅz 2yz 4x 4x

3 203,239
54 4y2x2xz 2x2y2z 2xÅz 2xz 4y 4y

3 203,239
55 4Å z2xmxy 2x2y2z mxÅy mxy 4Å z 4Å z

3 61,76,213,239
55 4Å x2zmyz 2x2y2z myÅz myz 4Å x 4Å x

3 211,239
55 4Å y2zmxz 2x2y2z mxÅz mxz 4Å y 4Å y

3 213,239
56 2z3xyz 2x2y2z 3xyz 3xÅyz

2 3xyÅz
2 3xyzÅ

2 184,190,203,213,239
56 2z3xyz 2x2y2z 3xyz

2 3xÅyz 3xyÅz 3xyzÅ 184,190,203,213,239
57 mz3Å xyz 2x2y2z 3Å xyz 3Å xÅyz

5 3Å xyÅz
5 3Å xyzÅ

5 190,239
57 mz3Å xyz 2x2y2z 3Å xyz

2 3Å xÅyz 3Å xyÅz 3Å xyzÅ 190,239
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4. Tensor distinction of domain pairs

In Table 4, for each of the 139 tensor classes of domain
pairs and 22 tensor types of rank n � 4, we list whether
or not tensors of these types can distinguish between the
domains of the domain pair. An extensive list of the
physical properties corresponding to these tensor types
is given in Sirotin & Shaskolskaya (1975).

At the intersection of a row corresponding to a tensor
class and a column corresponding to a tensor type is one
of three entries:

(i) Y, meaning that tensors of that tensor type
distinguish between the domains of domain pairs
belonging to that tensor class, i.e. the tensors Ti and Tj of
the domain states Si and Sj of the tensor pair {Si Sj) are
nonzero and distinct.

(ii) N, meaning that the tensors of the domains of the
domain pair are nonzero and identical and cannot
distinguish between the domains.

(iii) Z, meaning that the tensors of the domains of
the domain pair are both identically zero and cannot
distinguish between the domains.
For visual simplicity, only N and Z are explicitly given, Y
being replaced by an empty entry.

This trichotomy can be determined according to the
invariance of the tensor of the type T under the groups F
and K. The tensor Ti is invariant under F and Tj � gijTi.
If Ti is also invariant under the element gij, it is invariant
under the elements of the group K � hF; giji. Conse-
quently, the three entries can be interpreted as follows:

(i) Y means that the tensor of type T invariant under
F is not invariant under K.

(ii) N means that the tensor of type T invariant under
F is not identically zero and is also invariant under K.

(iii) Z means that the tensor of type T invariant under
F is identically zero.

5. Tensor component distinction

The purpose of the above classi®cation of domain pairs
into tensor classes is to provide a classi®cation in which
one can determine whether or not a tensor of a speci®c
tensor type can or cannot distinguish between the
domains of the domain pair. If a tensor of a speci®c type
can distinguish between the domains, then subsequently

one would wish to know which components are the same
and which are different in the two domains. This addi-
tional problem we shall refer to as tensor component
distinction. While we do not intend to focus on this
problem here, the above classi®cation of domain pairs
into tensor classes has been chosen to take the tensor
component distinction problem into account. For two
pairs of domain pairs belonging to the same tensor class
of domain pair, there exist coordinate systems for each
pair where the tensor component distinction is the same.
That is, if a speci®c component is the same (different)
within the domains of the ®rst domain pair, the identical
component is the same (different) within the domains of
the second pair. It is for this reason that a tensor clas-
si®cation has been de®ned where domain pairs
belonging to classes 69 and 70 are in distinct classes even
though the identical groups F and K are associated with
them. (And, consequently, the tensor distinction of
domain pairs belonging to both these classes is iden-
tical.) The tensor component distinction of domain pairs
of these two classes is different.

Consider the polarization tensor P and two domain
pairs: (i) a domain pair of tensor class 69 with

Fi � m�xymz2xy; gij � m�xz and K � mz
�3xyzmxy

Pi � �P;P; 0� and Pj � �0;P;P�;
and (ii) a domain pair of tensor class 70 with

Fi � m�xymz2xy; gij � 2�yz and K � mz
�3xyzmxy

Pi � �P;P; 0� and Pj � �ÿP; 0;ÿP�:
While polarization does distinguish between the
domains in both domain pairs, since both have the same
F and K, the tensor-component distinction is distinct.
Comparing the polarization tensors in the domains of
the domain pair of tensor class No. 69, one ®nds that one
component remains the same while the remaining two
interexchange, while in the domains of the domain pair
of tensor class No. 70 all three components change.

APPENDIX A

We show here that equation (2c) follows from equations
(2a) and (2b): We ®rst show that, for any element gijfi of

Table 3. The 139 tensor classes of domain pairs

A numerical index is given in the ®rst column; an asterisk denotes that the tensor class is nonferroelastic. The groups Kij and F of one domain pair
belonging to each tensor class are given in the second and third columns, respectively. This is followed by the elements of the coset gijF. Only those
classes are listed for which F = 2x2y2z.

Tensor class Kij F
gijF

53* mxmymz 2x2y2z 1Å mx my mz

54 4z2x2xy 2x2y2z 2xy 2xÅy 4z 4z
3

55 4Å z2xmxy 2x2y2z mxÅy mxy 4Å z 4Å z
3

56 2z3xyz 2x2y2z 3xyz 3xÅyz
2 3xyÅz

2 3xyzÅ
2

57 mz3Å xyz 2x2y2z 3Å xyz 3Å xÅyz
5 3Å xyÅz

5 3Å xyzÅ
5
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gijFi, rgijfir
ÿ1 is contained in gi0j0Fi0, i.e. that the element

rgijfir
ÿ1 transforms the domain state Si0 into the domain

state Sj0:

rgij fir
ÿ1Si0 � rgijr

ÿ1rfir
ÿ1Si0

� �rgijr
ÿ1��rfir

ÿ1�Si0

� �gi0j0 fi0 �� f 0i0 �Si0

� gi0 j0Si0

� Sj0 :

Consequently, every element of the coset gijFi is trans-
formed by the element r into an element of the coset
gi0j0Fi0. We next show that every element gi0j0fi0 of the coset
gi0j0Fi0 is obtained from some element of the coset gijFi by
a transformation with the element r. To do this, we show
that rÿ1gi0j0fi0r is an element of gijFi, i.e. is an element
which transforms the domain state Si into the domain
state Sj:

rÿ1gi0j0 fi0rSi � rÿ1gi0 j0rrÿ1fi0rSi

� �rÿ1gi0j0r��rÿ1fi0r�Si

� �gijr
ÿ1f 0ÿ1

i0 r��rÿ1fi0r�Si

� gijf
0
i fiSi

� gijSi

� Sj:

It follows that rgijFir
ÿ1 � gi0 j0Fi0 .

APPENDIX B

To show that the classi®cation of domain pairs given by
equations (2) is appropriate for the tensor distinction of
domain pairs, we show that, if a tensor type can (cannot)
distinguish between the ®rst pair of domains, then it
can (cannot) distinguish between the second pair of
domains:

Assume that two domain pairs {Si, Sj} and {Si0, Sj0}
belong to the same class of domain pair. For a speci®c
tensor type T, Ti is invariant under the point group Fi

and Tj � gijTi. The tensor rTi is invariant under the
point group Fi0:

fi0 �rTi� � rfir
ÿ1rTi � rfiTi � rTi

and, consequently, Ti0 � rTi. In addition, Tj0 � rTj since

Tj0 � gi0j0Ti0 � gi0 j0 fk0Ti0 � rgijr
ÿ1rTi � rgijTi � rTj:

Since Ti0 � rTi and Tj0 � rTj, it follows that if Ti and Tj

are (are not) distinct, then Ti0 and Tj0 are (are not)
distinct, and if a tensor type T can (cannot) distinguish
between the ®rst pair of domains, then it can (cannot)
distinguish between the second pair of domains.

APPENDIX C

If (Si, Sj) and (Si0, Sj0) belong to the same tensor class of
domain pair, then there exists an element r of R such
that rFir

ÿ1 � Fi0 , rgijr
ÿ1 � gi0 j0 fi0 and rgijFir

ÿ1 � gi0 j0Fi0 .
Since rFir

ÿ1 � Fi0 , we have rSi � Si0 and rSj � Sj0 since

rFjr
ÿ1 � r�gijFig

ÿ1
ij �rÿ1

� gi0j0Fi0rgÿ1
ij rÿ1

� Fj0gi0 j0rgÿ1
ij rÿ1

� Fj0 fj0

� rgijFir
ÿ1rgÿ1

ij rÿ1

� gi0j0Fi0g
ÿ1
i0j0 gi0 j0rgÿ1

ij rÿ1

� Fj0gi0 j0 f
ÿ1
i0 gÿ1

i0 j0

� Fj0 :

Consequently, �rSi; rSj� � �Si0 ; Sj0 �.
Conversely, if �rSi; rSj� � �Si0 ; Sj0 �, then rFir

ÿ1 � Fi0
and rgijr

ÿ1 � gi0j0 fi0 since

rgijr
ÿ1Si0 � rgijr

ÿ1�rSi� � rgijSi � rSj � Sj0 :

Consequently, (Si, Sj) and (Si0, Sj0) belong to the same
tensor class of domain pairs.

Table 4. For 22 tensor types and each of the 139 tensor
classes is given whether or not physical property tensors
of the tensor type can distinguish between domains of

domain pairs belonging to the tensor class

The tensor types are listed in the ®rst column and each column is
headed by the index of a tensor class. Only those classes are listed for
which F = 2x2y2z. A blank entry denotes that the tensor type can
distinguish between the domains. N denotes that the tensors are
nonzero and cannot distinguish between the domains. Z denotes that
the tensors are identically zero and cannot distinguish between the
domains. " denotes a pseudoscalar and V denotes a polar vector tensor.

Tensor type
Tensor class of domain pair

53* 54 55 56 57

" N N
V Z Z Z Z Z
"V Z Z Z Z Z
[V2] N
{V2} Z Z Z Z Z
V2 N
"[V2]
"{V2} Z Z Z Z Z
"V2

[V3] N N
V[V2]
{V2}V
V3

"V[V2] N
"{V2}V N
[V4] N
V[V3] N
[[V2]2] N
[V2]2 N
[(V2)2] N
[V2]V2 N
V4 N
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APPENDIX D

Two domain pairs {Si, Sj} and fSi0 ; Sj0 g � fgSi; gSjg, which
belong to the same double-coset class of domain pair,
belong to the same tensor class of domain pair: Let Fi be
the point group of Si and gijSi � Sj. From the de®nition
fSi0 ; Sj0 g � fgSi; gSjg, it follows that Fi0 � gFig

ÿ1 and
gi0 j0 � ggijg

ÿ1. Consequently, equation (2a) is auto-
matically satis®ed, and since

ggijFig
ÿ1 � �ggijg

ÿ1��gFig
ÿ1� � gi0j0Fi0 ;

equation (2c) is also satis®ed. The two domain pairs
{Si, Sj} and fSi0 ; Sj0 g � fgSi; gSjg then belong to the same
tensor class of domain pair.

The author would like to acknowledge the many
informative and fruitful discussions, over many years,
with Dr. V. Janovec.
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